US009460000B2

a2 United States Patent

Yoo et al.

US 9,460,000 B2
Oct. 4, 2016

(10) Patent No.:
45) Date of Patent:

(54) METHOD AND SYSTEM FOR
DYNAMICALLY CHANGING PAGE
ALLOCATOR

(71) Applicant: SAMSUNG ELECTRONICS CO.,

LTD., Suwon-si (KR)
(72)

Inventors: Junghyun Yoo, Seoul (KR); Sungmin

Lee, Suwon-si (KR)
(73)

Assignee: SAMSUNG ELECTRONICS CO.,

LTD., Suwon-si (KR)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 279 days.

@
(22)

Appl. No.: 14/158,134
Filed: Jan. 17, 2014

Prior Publication Data

US 2014/0201490 Al Jul. 17, 2014

(65)

(30) Foreign Application Priority Data

Jan. 17,2013 (KR) .ccevvieeice 10-2013-0005433

(51) Imt. ClL
GO6F 12/02
U.S. CL
CPC it GO6F 12/023 (2013.01)
Field of Classification Search

CPC e GOGF 12/023
See application file for complete search history.

(2006.01)
(52)

(58)

Root Page allocator

(56) References Cited

U.S. PATENT DOCUMENTS

5,225,065 A * 7/1993 Mettes GOIN 27/423
204/400
7,035,989 Bl 4/2006 Hinker et al.
2005/0138320 Al 6/2005 Mitarai et al.
2009/0089531 Al 4/2009 Johnson et al.
2012/0284483 Al 112012 Foster et al.
2012/0303878 Al 112012 Haas et al.

OTHER PUBLICATIONS

Andrew S. Tanenbaum, Modern Operating Systems, 1992, Prentice
Hall, Inc., p. 281.*

International Search Report for PCT/KR2014/000525 dated Apr.
30, 2014 [PCT/ISA/210].

* cited by examiner

Primary Examiner — Reginald Bragdon
Assistant Examiner — Mehdi Namazi
(74) Attorney, Agent, or Firm — Sughrue Mion, PLLC

(57) ABSTRACT

A method and a system of dynamically changing a page
allocator are provided. The method includes determining a
state of a page allocation system; and forking a child page
allocator from a parent page allocator, or merging a child
page allocator into a parent page allocator, based on the
determination.

19 Claims, 20 Drawing Sheets

PROCESSING AMOUNT OF REQUEST FOR PAGE ALLOCATION & FREE
SIZE OF FREE PAGE
AMOUNT OF MESSAGE TRANSMISSION BETWEEN ALLOCATORS

INSTRUCT PAGE ALLOCATION FORK OR MERGE

100

Page Allocator#0

210

Coordinator

Page Rllocator#n 200

Page Allocator

Page Allocator#k

U.S. Patent Oct. 4, 2016 Sheet 1 of 20 US 9,460,000 B2

FIG. 1

Global Page Allocator

PAGE POOL
MANAGEMENT DATA
W REQUEST FOR
ALLOCATING
7//////////@ [OR DEII\JL;[(;)EATING]

Fine-grained (8
Lgck (« 2222

Page Pool

FITW

U.S. Patent Oct. 4, 2016 Sheet 2 of 20 US 9,460,000 B2

FIG. 2

REQUEST FOR ALLOCATING [OR DEALLOCATING] PAGE

JJ 1R

Local Page Local Page Local Page

Allocator#1 Rllocator#2 Allocator#3

PAGE POOL PAGE POOL PAGE POOL
MANAGEMENT DATA MANAGEMENT DATA MANAGEMENT DATA

Page Pool

US 9,460,000 B2

Sheet 3 of 20

Oct. 4, 2016

U.S. Patent

0

0¢

Y#101830]|y 9684

...... 10120|1y 368 fec:

Ug101830|ly 96ed e

101eUIRI00Y

0#101820]|¢ 3684

10120||e 86ed 1004

39430 HO Y404 NOLLYOOTIY 394d LonuISN €

SHOLYIO0TIY NIIM138 NOISSINSNYHL I0¥SSIW 40 INNOWY

PYd I 078 —

3344 3 NOLLYOOTTY 30¥d HO4 1SIN03H 40 LNNOWY INISSII0Hd

¢ OId

\J\
ool

US 9,460,000 B2

Sheet 4 of 20

Oct. 4, 2016

U.S. Patent

08¢
.

0S¢
.

G#101830]|¢¥ 3bed

f7#101820]|y 36ed

afiJaul J0iedo|le abed ”
)10} 101BJ0][6 Bbed T.

0L8

9#101820]|y 3bed

o

076~

£+#101820]|y 3bed

02C

01e~ 0#101e00]ly 864

10]e30||e abed 100y

v OId

U.S. Patent Oct. 4, 2016 Sheet 5 of 20 US 9,460,000 B2

FIG. b
211
o~
PAGE ADDRESS Owner Status
068 ~ 468 Self

Page Allocator#0 ~-210

US 9,460,000 B2

Sheet 6 of 20

Oct. 4, 2016

U.S. Patent

0%¢
.

| #101820]|y 96ed

=
-
—
-
-

YA

7 oy
012~ pgl01e20y 9664

T#10IB00] Y Oy ~ 4

oS | 891 ~890

snieis 1aumQ SS3daay 19vd

9 "DId

HeS | @p ~ @
0#101830IlY | 892~ 830
SMmels 13ump §53400v 39vd
\'\
Y44

US 9,460,000 B2

Sheet 7 of 20

Oct. 4, 2016

U.S. Patent

0€¢
.

¢#101890]|y a6ed

0¢¢
.

|#J0Jeolly | 99y ~ 83¢
RS | @ ~ 4
0#101ed0lly | 991 ~890
snieis I1BUMQ $S34a0y 19vd
\,\
1€¢

~

~

woy

| #101820]lY 9hkd

0Lé—~ pgJlojeooly abed
L#1018201y | 99V~ 992
gHI0IEO0TTY 4e ~ 491
Jes | 991 ~890
Lie~ smels 13UMQ SS34aay 19vd
L "DId

Jes | 83t~ 8¢
0#1018001lY | 892 ~890
snieis 13umQ SS340ay 39vd
\{\
YA/

US 9,460,000 B2

Sheet 8 of 20

Oct. 4, 2016

U.S. Patent

|#1018001lY | HOV ~ 9O¢
J|8s 89¢ ~ 891
0#J01200Ily | HIL~@ED0
sneis I3ump SS3400Y 39vd
\l\
I8¢

08 | @ - e
L#1018301¥ | gog ~ 897
DAI0IE0NY | 89~ 890
wz~) smeis | soumo | sswaay 1y
0%~ £4101B00||y 9bed
® e o ei012001 Ty | @y ~ g
Z#101890]1y 9684 |#101820|ly 36ed Jes | 896~ 89¢
0#101830]ly | 892~ 890
o] H_&,LH,,_N/UD__«ME smeig W\sgs SS3H00Y 304
122
#1030y | 9p -~ 882
Z#10120llY | 892 - 89
JoS | 891 - 890
Hz~ smeis | ssumo | SSIMOOY 1Y
8 "DIH

US 9,460,000 B2

Sheet 9 of 20

Oct. 4, 2016

U.S. Patent

|#101e301Y | 99F ~ 89¢
Jes | 83Z ~ 80l
0#l01ed0lly | 891 ~890
smeis sump | SS3HOQY 9vd
\.{\
1£C

J9S | 99y ~ 89e
}#101830IlY | g9¢ ~ 892
0#10130|lY | 89¢~890
lyz—~1 smeig laumQ $s34aay 39vd
0v¢~{ e#I01e90]|y 9684
DEZ 02
[N x £4101290|Iy 89 ~ 99¢€
Z#101890][Yy 9684 | #101890|ly 9684 198 | 998 ~ 897
\\\\\mm 1aul 0#101ed0]ly | H9Z ~ 8990
s smels 13ump §S340aY 39vd
0L~ p#lo1e00]Yy 3beq —
¥4
J#101820]lY | 897 ~ 89¢
¢#101820]1Y g9¢ ~ 991
J8s | 991 ~890
LLe~{ smels 1aump $s340ay 39vd
6 "OId

US 9,460,000 B2

Sheet 10 of 20

Oct. 4, 2016

U.S. Patent

Ji°S | 89¥ ~ 89E
|#101B30IY | gog ~ 89
0#Joledolly | 892 ~890
1172~ Smels 13UMQ SS3Hoav 39vd
0v¢~ g#I01890|)y bRy
€ 0%
e M z

¢#101e30|1y 3bed

| #101830|ly 96ed

|#1018301ly | 89¥ ~ 89
Jes | 992~ 891
0#.0led0lly | @91 ~8930
Snels 1BUMQ | SS3HOAY 39vd
\’\
I8¢

>
3
3

-~ aBiaw

0L~ Dz101090]1y 968d
C#103800] TY g9t ~ 99e
j1¢ | H9E ~89¢
¢#1018201ly | 892 ~ 991
e~ Jag | 891 ~890
smeis 1aump $S3400y 39vd
0T "OId

US 9,460,000 B2

Sheet 11 of 20

Oct. 4, 2016

U.S. Patent

Jes | @9y -~ gve
|#1038001lY | g9g ~ @92
010083014 | 92 - 890
iz~J smeis | seumo | ssaaoy Bvd
017
/\/
\xx\xﬁ% £4101e90]ly 3684
L#100e201Y | 99~
9 - B 0€2 M 172
s | 99z ~ a9l S =N
D#101R30]I¥ 491 ~ 890 N%‘_Smuc_/& o0ed ?w W _%hSm\uc_E o
smeis | Joumg | SSIOOY 10 MW " eBiow
& oo
€3N0 40 JNVHO 40 SHOLYOOTIY 30vd IO weod OH6 | O#0%ea011y 8bed
¢4101020] ¥ | @9y ~ 898
719 | 99E ~ 892
Z#I000lY | @9z - g9
1z~ oS | 891L~d90
smelg | JoumQ | SSIMOOY Ivd
IT "HId

US 9,460,000 B2

Sheet 12 of 20

Oct. 4, 2016

U.S. Patent

0€2
.

¢#101820]|y 364

8S | 99v ~ @9e
O#I01E20TIV | gog ~ 892
041001200y | 992~ 990
19z~ SMBS Jsump | SS3HOOY I9vd
0t2
.
£4101e20]|y 9beq
022
.

| #101890]ly 9684

E#101e001 | @91 ~ @9
(#107200[T¥ | HOE ~ 89C
8 | 89 ~ 89l
0#i018301Y | HIL~B90
Smeis IoUMQ $S34a0y 19vd
—

182

HINMO 40 J9NVHD 40 SHOLYIO0TIY 39vd OTIHD WHOANI 0z~

=
>
-

-

- aBlaw

He—

0#101890]|y 96ed
SHIOIBDO[Y 397 ~ 89€
715 | ©9€ ~ 899¢
¢#101820|IY | @92 ~ @91
{88 | 891 ~990
smeis 1aUMp Ss3daay vvd
¢l "DI4d

[#10183011Y

18LM0

\‘\
I8¢

US 9,460,000 B2

Sheet 13 of 20

Oct. 4, 2016

U.S. Patent

s | g9t~ goe
0#1030IY | gog ~ @9z
0#101e00]y | 892 ~ 89 0
1z~ Smels | lsumg | sSIay 3o
0z E#101830]lY abeq
02
L

Z#101e20||y 86ed "

€#101ea01y | @IY ~ HIE
0101301y | ©9E ~ 8OC
8§ | H9C ~ 89l
01018301y | €31 ~830
sniels ioumg §53400v 19vd
\‘\
16¢

0L~ p#Jo1e20]Y 9bkd

E#101201y | 8OY ~ QOE

Jjos [89¢€ ~ 892
¢#101B201IY g39¢ ~ 291
e~ jas | 891 ~990

smeis Ioump | SS3400Y 30vd

el "DId

US 9,460,000 B2

Sheet 14 of 20

Oct. 4, 2016

U.S. Patent

0E?
.

1144
.

¢#101220||y 36ed

| #101800]lY 36ed

|#101800]lY | 837 ~ 89¢
07Ty J8s | 83¢~ 89l
04101201y | HII ~890
Snieis IBump SS3Ha0v 39vd
\'\
I8¢

g9 ¢ 01 99 | 40 883400Y 404
39¥d 40 ONILYDOTIY 1S3N03H

0Le~ p#loieao|y 9bed
[#101830]lY | 99Y ~ €92
CH#I0IBO0ITY e ~ Bl
Jos | 891 ~990
LHE~{ smeis 1aump $s34aay 39vd
VL "OId

JeS | 89r ~ 83¢
0#1018301lY | 892~ 890
SNieis 13UMQ SS340ay Wvd
\l\
1¢

US 9,460,000 B2

Sheet 15 of 20

Oct. 4, 2016

U.S. Patent

L0y~ 9#101890]|y 96ed
C#101290]|y 9bed 1#101890|1y 96ed 0~ £4101R20|y 9684
09¢ 0G¢ 19vd 334
//// ON SI F43HL NIHM E#H0LYI0TTY
—~ 19vd 0L 1S3n034 HISNYHL
062~ Z#101290]1y 9684 08¢~
012 0#101890||y 9684 19vd 40
19vd 1344 ONILYI0TTY 1SIN0M
NHNL3H

G¢T "OId

US 9,460,000 B2

Sheet 16 of 20

Oct. 4, 2016

U.S. Patent

€#101e30Ily | 89Y ~ QI
I#1018301y | @9E ~ 93¢
01y J8s | 89¢ ~ 49l
0#1018200lY | 8391 ~830
Smeis IsumQ S33400Y 30vd
=

34

yos | Eow ~ E9E
400 | gog - g5z
D#10%e901Y | 892~ 890
] smeis | seumo | ssmaoy 3w
9 2 0L 80 | 40 S0V 404 e
Nty oy . | c#ioo0iy abeq
" o e#101800ly | 89 ~ 8O€
Z#101830]ly 9624 | #101890]1y 3be s | soe ~ a0z
0#101200lly | 69 ~ B9 0
o] :E,Lu,m,g__,\‘w_ws_ smeis | Jeumo | SS3O0Y 39w
&
#0820y | 807 - 892
Z#i0R0N | 892 - 89
g~ Jos | 891~890
smeis | JeuMp | SsIooy 1vd
91 "OId

US 9,460,000 B2

Sheet 17 of 20

Oct. 4, 2016

U.S. Patent

£#10183011Y 29y ~ 89€
1#1018201lY g89¢ ~ 89¢
9914 HES | @ ~ Al
0#l01e00])y | 891 ~890
sniels I3UMQ SS3400Y 39vd
—

182

g920189 140
$S3400Y 404 39vd 40
ONILYDOTIVAO LSIN0IH

0€2

NIARS

—

JI9S 49t ~ 99€
| #101R90][Y 49€ ~ 992
Q#103B00[1Y | 9% ~ 49 0

SNieis

J3UMQ

0ve
.

£4101e20|ly 968d

s
/
s

022
S g#101800[ly | @9y ~ A9E
| #101890||y 96ed JIeS 49g ~ 89¢
0#101820]ly | §92~890
smes 19uMQ | SSIHOOV 39vd
\J.\
122

891 ~ @
CHIOJEOTTY |~)¢ ~ 9T
JIAN JoS | 89L-890
STieiS | Jeump | SSIOOY 30kd

LT 7914

U.S. Patent

Oct. 4, 2016

FIG. 18

(START)

Y

Sheet 18 of 20

EXECUTE PAGE ALLOCATOR

US 9,460,000 B2

~—100

IS SYSTEM'S STATE
OVERSUBSCRIBED?

720

Y

DETERMINE FORKING OF CHILD PAGE
ALLOCATOR FROM PARENT PAGE ALLOCATOR

122
Y J

INSTRUCT FORKING TO PARENT
PAGE ALLOCATOR

Y

724
L

FORK CHILD PAGE ALLOCATOR

730
Y P

PASS OWNERSHIP OF A PART OF PAGE
ADDRESS TO FORKED CHILD PAGE ALLOCATOR

740
Y L

UPDATE EACH OF CORRESPONDING DATA
TABLES FOR MANAGING PAGE POOL

750
y

DETERMINE MERGING OF FORKED CHILD
PAGE ALLOCATOR INTO PARENT
PAGE ALLOCATOR

152
Y ~

INSTRUCT MERGING TO CHILD PAGE ALLOGATOR

704
Y —~

MERGE INTO PARENT PAGE ALLOCATOR

760
Y ~

PASS OWNERSHIP OF CHILD PAGE ALLOCATOR

770
Y ~

UPDATE PAGE POOL MANAGEMENT DATA
TABLE OF PARENT PAGE ALLOCATOR

END

U.S. Patent Oct. 4, 2016 Sheet 19 of 20

FIG. 19

(START)

Y

RECEIVE REQUEST FOR ALLOCATING OR
DEALLOCATING PAGE FOR SPECIFIC PAGE ADDRESS| ™800

NO

IS OWNER OF SPECIFIC PAGE
ADDRESS ITSELF?

US 9,460,000 B2

820 840

~ Y ~

ALLOCATE OR DEALLOCATE CORRESPONDING TRACK CORRESPONDING OWNER OF
SPECIFIC PAGE ADDRESS SPECIFIC PAGE ADDRESS

830 850

Y ~ Y ~

UPDATE AND STORE STATUS INFORMATION AT TRANSFER REQUEST FOR ALLOCATING OR

ITS OWN PAGE POOL MANAGEMENT DATA TABLE DEALLOCATING PAGE TO CORRESPONDING OWNER

U.S. Patent Oct. 4, 2016 Sheet 20 of 20 US 9,460,000 B2

FIG. 20

(START)

Y

RECEIVE REQUEST FOR ALLOCATING PAGE MADE
WITHOUT LIMIT FOR SPECIFIC PAGE ADDRESS [~ 900

940
Y ~
TRACK CHILD PAGE ALLOCATOR
ALLOCATE PAGE ADDRESS WHICH OWHS FREE PAGE
930 950
- o SFER REQUEST FU‘ 'ﬁ ALLOCATING PKEE/TU
STORE ALLOCATED STATUS AS STATUS OF TRAN
CORRESPONDING CHILD PAGE
ALLOCATED PAGE ADDRESS ALLOCATOR WHICH OWNS FREE PAGE

US 9,460,000 B2

1
METHOD AND SYSTEM FOR
DYNAMICALLY CHANGING PAGE
ALLOCATOR

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims priority from Korean Patent
Application No. 10-2013-0005433, filed on Jan. 17, 2013,
which is hereby incorporated by reference for all purposes as
fully set forth herein.

BACKGROUND

1. Field

Systems and methods consistent with exemplary embodi-
ments relate to a page allocation, and more particularly, to a
method and a system for dynamically changing a page
allocator, which can effectively manage a page pool by
forking or merging page allocators in consideration of a
system’s state.

2. Description of the Related Art

In recent years, a multi-core hardware environment in
which a plurality of processors (or CPU cores) are operated
in one system has been more widely used. That is, after a
dual core product entered the market, this trend has been
more noticeable, and now, a many-core processor age is
being opened beyond a multi-core environment.

In accordance with such a period background, chip den-
sities of the processors have been increasing and multi-core
architectures have been developed, so that on-chip process-
ing resources have been increasing.

A multi-core chip recently has more than 10 processors,
and one chip is expected to have several hundred processors
in the near future.

As the number of processors included in one system
increases, it becomes more advantageous to provide scal-
ability of operating systems. That is, it is advantageous to
control operations of main components of the operating
system to effectively utilize a plurality of processors, and a
page allocation scheme of a memory should be reconsidered
according to this aspect.

The page allocation schemes according to the related art
correspond to a global page allocation scheme and a local
page allocation scheme, and page allocation schemes are
statically determined in the two schemes.

FIG. 1 schematically illustrates a global page allocation
scheme, and FIG. 2 schematically illustrates a local page
allocation scheme.

Referring to FIG. 1, a global page allocator globally
manages pages through a pool including a plurality of pages.
A request for allocating a plurality of pages and a request for
deallocating a plurality of pages are simultaneously pro-
cessed through lock segmentation for one pool.

Such a global page allocator manages all the pages
through one page allocator, so that it is easy to minimize
memory fragmentation but there is a disadvantage in that
scalabilities for the request for allocating a plurality of pages
and the request for deallocating a plurality of pages dete-
riorate. Although a buddy allocator of a Linux system
increases concurrency of a page pool management data
access through lock segmentation in order to address this
problem, there is a limit to the improvement in the scalabil-
ity through this process.

Referring to FIG. 2, a local page allocator divides a
plurality of pages into a plurality of pools, and manages each
of the pools through a separate page allocator. Since each of

15

20

25

35

40

45

55

2

the page allocators operates independently, each of the page
allocators simultaneously processes requests for allocating a
plurality of pages and requests for deallocating a plurality of
pages. Since each of the local page allocators manages a
separate page pool, a perfect concurrency for processing the
requests for allocating and deallocating a page is ensured.

However, the local page allocator manages the pages
while dividing all the pages, so that when memory loading
is unbalanced, there may be a lack of pages even when there
are sufficient free pages from a view point of the whole page
pool. Further, when an allocator to which pages are allocated
and an allocator which requests cancellation of the allocat-
ing are different from each other, there is a disadvantage in
that a page fragmentation phenomenon may be generated
among the allocators. The allocators may communicate with
one another in an attempt to avoid this phenomenon, but
there is a disadvantage in that the communication increases
overhead in the page pool management.

Thus, there is a trade-off between advantages and disad-
vantages of the global allocation scheme and the local
allocation scheme.

SUMMARY

One or more exemplary embodiments provide a method
and a system for dynamically changing a page allocator,
which can effectively manage a page pool by forking or
merging page allocators in consideration of a system’s state.

According to an aspect of an exemplary embodiment,
there is provided a system of dynamically changing a page
allocator, the system including a page allocator configured to
allocate or deallocate a page corresponding to a memory
address according to a request for allocating or deallocating
the page; and a coordinator configured to determine a state
of the system, and fork a child page allocator from the page
allocator, which servers as a parent page allocator, based on
the determination.

The coordinator may merge the forked child page allo-
cator into the parent allocator based on the determination.

According to another aspect of an exemplary embodi-
ment, there is provided a method of dynamically changing
a page allocator in a page allocation system, the method
including determining a state of the page allocation system;
and forking a child page allocator from a parent page
allocator, or merging a child page allocator into a parent
page allocator, based on the determination.

According to another aspect of an exemplary embodi-
ment, there is provided a system of dynamically changing a
page allocator, the system comprising a plurality of page
allocators, each page allocator configured to allocate or
deallocate a page corresponding to a memory address
according to a request for allocating or deallocating the
page; and a coordinator configured to, in response to the
request received by one of the plurality of page allocators,
determine a state of the system, and, based on the determi-
nation, fork a child page allocator from the receiving page
allocator, or merge the receiving page allocator into a parent
page allocator of the receiving page allocator.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and/or other aspects will be more apparent
from the following detailed description of exemplary
embodiments in conjunction with the accompanying draw-
ings, in which:

FIG. 1 schematically illustrates a global page allocation
scheme;

US 9,460,000 B2

3

FIG. 2 schematically illustrates a local page allocation
scheme;

FIG. 3 schematically illustrates a system for dynamically
changing a page allocator in a many core environment
according to an exemplary embodiment;

FIG. 4 schematically illustrates an example of a family
tree of a dynamic page allocation system according to an
exemplary embodiment;

FIGS. 5 to 8 schematically illustrate a forking operation
of a dynamic page allocation system according to an exem-
plary embodiment;

FIGS. 9 to 13 schematically illustrate a merging operation
of a dynamic page allocation system according to an exem-
plary embodiment;

FIGS. 14 and 15 illustrate an operation of allocating a
page in a dynamic page allocation system according to an
exemplary embodiment;

FIGS. 16 and 17 illustrate an operation of deallocating a
page in a dynamic page allocation system according to an
exemplary embodiment;

FIG. 18 is a flowchart illustrating a method of changing
a dynamic page allocator according to an exemplary
embodiment;

FIG. 19 is a flowchart illustrating a method of dynami-
cally allocating or deallocating a page according to an
exemplary embodiment; and

FIG. 20 is a flowchart illustrating a method of dynami-
cally allocating a page according to an exemplary embodi-
ment.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

In the following description, only a part needed for
understanding an operation according to an exemplary
embodiment will be described, and a detailed description of
other parts will be omitted when it may make the subject
matter rather unclear.

In the following description, the terms or words used in
the specification and claims are not necessarily interpreted
using typical or dictionary limited meanings, and are con-
structed as meanings and concepts conforming to the tech-
nical spirit of the present inventive concept based on the
principle that the inventors can appropriately define the
concepts of the terms to explain the present inventive
concept in the best manner. Thus, since exemplary embodi-
ments disclosed in the present specification and configura-
tions illustrated in the drawings are just the most preferable
exemplary embodiments and do not represent all the tech-
nical spirits of the present inventive concept, it should be
understood that various equivalents and variations which
can substitute for these exemplary embodiments and con-
figurations may be made at the time of filing of the appli-
cation.

Hereinafter, configurations related to functions of the
present inventive concept and roles of the configurations
will be described in more detail. Herein, characteristics of
the present inventive concept are not limited to the above-
mentioned examples. That is, the characteristics of the
present inventive concept may be understood to include
shape changes of configurations and additional functions
which will be described as well as the above-mentioned
examples.

FIG. 3 schematically illustrates a system for dynamically
changing a page allocator in a many core environment
according to an exemplary embodiment.

15

20

30

35

40

45

55

4

Referring to FIG. 3, a system for dynamically changing a
page allocator includes a coordinator 100 and at least one
page allocator 200.

The coordinator 100 receives status information on a
status during operation from the page allocators 200. That is,
the page allocators 200 periodically send information on a
processing amount of allocating and deallocating a page,
information on a size of free pages in a current page pool,
and information on a message transmission amount between
the page allocators. The page allocators 200 may send the
information cyclically.

The coordinator 100 may determine a system’s state
based on the information received from the page allocators
200. For example, the coordinator 100 may determine the
system’s state as at least one of a state where communication
between the plurality of page allocators is in an overhead
state, a state where the number of requests for allocating
and/or deallocating a page by the page allocators becomes
lower than a reference value or higher than a reference
value, a state where a workload of the page allocators is
smaller than a reference value or larger than a reference
value, and a state where a size of the whole free page
corresponding to the page allocators is smaller than a
reference value or larger than a reference value. Each of the
reference values may be predetermined.

When the workload of the page allocator 200 becomes
larger than the reference value, the coordinator 100 may
partially adopt a more local page allocation scheme through
performing forking of the page allocators, so as to improve
the scalability.

In contrast, when it is determined that the global page
allocation scheme is more advantageous than the local page
allocation scheme since the workload of the page allocator
200 becomes small or the size of the whole free page
becomes small, a more global page allocation scheme may
be adopted through performing merging between the page
allocators.

In this way, the coordinator 100 according to the present
exemplary embodiment may dynamically change the page
allocation scheme according to the system’s state.

FIG. 4 schematically illustrates an example of a family
tree of a dynamic page allocation system according to an
exemplary embodiment.

Referring to FIG. 4, the dynamic page allocator includes
a root page allocator which is a root page allocator (Page
Allocator #0) 210 corresponding to initialization of the
dynamic page allocation system. Further, the dynamic page
allocator includes a first page allocator (Page Allocator #1)
220 and a second page allocator (Page Allocator #2) 230
forking from the root page allocator (Page Allocator #0) 210,
a third page allocator (Page Allocator #3) 240 forking from
the first page allocator (Page Allocator #1) 220, a sixth page
allocator (Page Allocator #6) 270 forking from the third
page allocator (Page Allocator #3) 240, and a fourth page
allocator (Page Allocator #4) 250 and a fifth page allocator
(Page Allocator #5) 260 forking from the second page
allocator (Page Allocator #2) 230.

In this way, the page allocators of the dynamic page
allocation system are repeatedly connected to each other in
a relation of parent and child. In accordance with instruction
of the coordinator 100, the child page allocator is forked
from the parent page, or the child page allocator is merged
into the parent page allocator. The forking and merging
operations are executed when the page allocators are in
relation of parent and child.

US 9,460,000 B2

5

The data transmission between the coordinator 100 and
the page allocator 200 or between the page allocators 200
may be implemented based on message transmission or a
shared memory.

By the above-mentioned method, the coordinator 100
may dynamically change the page allocation scheme, so as
to effectively manage the pages according to the system’s
state.

FIGS. 5 to 8 schematically illustrate a forking operation
of a dynamic page allocation system according to an exem-
plary embodiment.

FIG. 5 illustrates a root page allocator 210 corresponding
to initialization of the dynamic page allocation system, and
a root page pool management data 211 managed by the root
page allocator 210.

The root page pool management data 211 may store itself
as an owner of a page range of, for example, 0 GB to 4 GB
(e.g., record “self” in the blank named “owner”). A status of
the page range of 0 GB to 4 GB corresponds to an area
indicating whether the corresponding page range is in an
allocated status “Alloc” or a deallocated status “Free”. Since
the status relates to an allocated status of the corresponding
page, the status will be described with reference to FIGS. 14
to 16 although not described in FIGS. 5 to 8.

Referring to FIG. 6, the coordinator 100 primarily forks a
child page allocator, in this case the first page allocator 220,
from the root page allocator 210.

In detail, the coordinator 100 generates a child page
allocator, i.e., the first page allocator 220, corresponding to
the root page allocator 210 as the primary forking, and
passes ownership of a part of pages owned by the root page
allocator 210 to the first page allocator 220.

For example, the owner of a page range of 2 GB to 4 GB
among a page range of 0 GB to 4 GB of the root page pool
management data 211 is changed from itself Allocator #0 to
the first page allocator Allocator #1. The root page allocator
210 corresponds to the parent page allocator, and the first
page allocator 220 corresponds to the child page allocator.

Referring to FIG. 7, the coordinator 100 may perform
secondary forking subsequent to the primary forking. That
is, the coordinator 100 generates the second page allocator
230 as another child page allocator of the root page allocator
210 and passes ownership of a part of pages among a page
range owned by the root page allocator 210 to the second
page allocator 230.

For example, the ownership of a page range of 1 GB to 2
GB owned by the root page allocator 210 is passed to the
second page allocator 230. Accordingly, the root page pool
management data 211 changes an owner of a page range of
1 GB to 2 GB from itself Allocator #0 to a second page
allocator Allocator #2 and stores the changed information,
and a second page pool management data 231 stores itself as
an owner of a page range of 1 GB to 2 GB.

Thus, after the above allocations, the root page pool
management data 211 stores itself, i.e. “Self”, as an owner
of a page range of 0 GB to 1 GB, stores the second page
allocator Allocator #2 as an owner of a page range of 1 GB
to 2 GB, and stores the first page allocator Allocator #1 as
an owner of a page range of 2 GB to 4 GB.

The second page pool management data 231 stores the
root page allocator Allocator #0 as an owner of a page range
of 0 GB to 1 GB, stores itself, i.e., “Self”, as an owner of a
page range of 1 GB to 2 GB, and stores the first page
allocator Allocator #1 as an owner of a page range of 2 GB
to 4 GB.

It can be seen that the owner of the page range of 0 GB
to 2 GB of a first pool management data 221 is changed from

15

20

30

40

45

50

55

65

6

the first page allocator 220 to the root page allocator 210
through the root page pool management data 211 and the
second page pool management data 231. That is, the first
pool management data 221 still indicates that the page range
0 GB to 2 GB is owned by the root page allocator 220
because the first page allocator 220 and the second page
allocator 230 are both children of the parent root page
allocator 210 and thus do not communicate directly with
each other.

Referring to FIG. 8, the coordinator 100 forks the first
page allocator 220 which has been a child page allocator of
the root page allocator 210 to generate the third page
allocator 240. At this time, the first page allocator 220 acts
as a child page allocator for the root page allocator 210 and
acts as a parent page allocator for the third page allocator
240.

For example, the ownership of a page range of 3 GB to 4
GB among a page range of 2 GB to 4 GB which the first page
allocator 220 has owned is passed to the third page allocator
240. Accordingly, the first page pool manage data 221
changes an owner of a page range of 3 GB to 4 GB from
itself, i.e., “Self” or Allocator #1, to the third page allocator
Allocator #3 and stores the changed information, and a third
page pool management data 241 stores itself, i.e., “Self” as
an owner of a page range of 3 GB to 4 GB.

The first page pool management data 221 stores the root
page allocator Allocator #0 as an owner of a page range of
0 GB to 2 GB, stores itself, i.e., “Self” as an owner of a page
range of 2 GB to 3 GB, and stores the third page allocator
Allocator #3 as an owner of a page range of 3 GB to 4 GB.

The third page pool management data 241 stores the root
page allocator Allocator #0 as an owner of a page range of
0 GB to 2 GB, stores the first page allocator Allocator #1 as
an owner of a page range of 2 GB to 3 GB, and stores itself,
i.e., “Self” as an owner of a page range of 3 GB to 4 GB.

FIGS. 9 to 13 schematically illustrate a merging operation
of a dynamic page allocation system according to an exem-
plary embodiment.

Referring to FIGS. 9 and 10, for example, it is assumed
that a status of the dynamic page allocation system continues
from and is equal to the status of the system illustrated in
FIG. 8. In a state where the root page allocator 210 to the
third page allocator 240 are forked, the coordinator 100 may
perform an operation of merging the first page allocator 220
into the root page allocator 210 as illustrated in FIG. 10.

In detail, the coordinator 100 merges the first page allo-
cator 220 to the root page allocator 210 as a primary merging
by passing the ownership of a page range of 2 GB to 3 GB
which the first page allocator 220 has owned to the root page
allocator 210.

Accordingly, referring to FIG. 10, the root page pool
management data 211 changes the owner of a page range of
2 GB to 3 GB from the first page allocator Allocator #1 to
itself, i.e., “Self”, changes the owner of a page range of 3 GB
to 4 GB from the first page allocator Allocator #1 to the third
page allocator Allocator #3, and stores the changed infor-
mation.

Here, the root page pool management data 211 may
update current owner information of the page range of 3 GB
to 4 GB through merging the first page allocator 220 into the
root page allocator 210.

Meanwhile, when merging the child page allocator, the
parent page allocator informs the other child page allocators
of owner information of the page range changed by the
merging.

That is, referring to FIG. 11, the root page allocator 210
corresponding to the parent page allocator informs the

US 9,460,000 B2

7

second page allocator 230 and the third page allocator 240
corresponding to the other child page allocators that the
owners of the page ranges of 2 GB to 3 GB and 3 GB to 4
GB are changed to the root page allocator 210 and the third
page allocator 240, respectively.

Referring to FIG. 12, the second page allocator 230 which
has received information on the changed owners from the
root page allocator 210 changes the owner of the page range
of 2 GB to 3 GB from the first page allocator Allocator #1
to the root page allocator Allocator #0, changes the owner of
the page range of 3 GB to 4 GB from the first page allocator
Allocator #1 to the third page allocator Allocator #3, based
on the received changed owner information, and stores the
changed information.

Similarly, the third page allocator 240 which has received
information on the changed owner from the root page
allocator 210 changes the owner of the page range of 2 GB
to 3 GB from the first page allocator Allocator #1 to the root
page allocator Allocator #0 based on the received changed
owner information, and stores the changed information.

FIG. 13 schematically illustrates a result of merging the
first page allocator 220 to the root page allocator 210.

FIGS. 14 and 15 illustrate an operation of allocating a
page in a dynamic page allocation system according to an
exemplary embodiment.

A case where a page allocator owning a specific page
range receives a request for allocating a page of the specific
page range will be described with reference to FIG. 14.

For example, the second page allocator 230 correspond-
ing to an owner of a page range of 1 GB to 2 GB may receive
a request for allocating a page of the page range of 1 GB to
2 GB. According to the request for allocating the pages, the
second page allocator 230 allocates the corresponding
pages, and stores an allocation status “Alloc” as a status of
the corresponding pages in the second page pool manage-
ment data 231.

An operation in which a page allocator, which has
received the request for allocating a page, copes with a case
where the page allocator itself does not own any free pages
will be described with reference to FIG. 15.

For example, if there is no page which can be allocated
when the first page allocator 220 receives the request for
allocating the pages, the first page allocator 220 may transfer
the request for allocating the pages to the third page allocator
240 corresponding to its own child page allocator. The third
page allocator 240 as the child page allocator which has
received the request for allocating the pages from the first
page allocator 220 as the parent page allocator may allocate
free pages of the page range corresponding to the request for
allocating the pages.

That is, the child page allocator may allocate the pages
instead of the parent page allocator which does not own
sufficient free pages.

Meanwhile, unlike the above-mentioned case, a page
allocator may receive a request for deallocating a page range
of which the page allocator is not an owner. This case will
be described with reference to FIGS. 16 and 17.

Referring to FIG. 16, for example, when an owner of a
page range of 1 GB to 2 GB is the second page allocator
Allocator #2 and the page range of 1 GB to 2 GB is an
allocated status “Alloc”, the third page allocator 240 may
receive a request for deallocating a page of the page range
of 1 GB to 2 GB.

In this case, as illustrated in FIG. 17, the third page
allocator 240 which has received the request of deallocating
the page transfers the request of deallocating the page to the

10

15

20

25

30

35

40

45

50

55

60

65

8

corresponding owner Allocator #0 of the corresponding page
range of 1 GB to 2 GB which is stored in its own third page
pool management data 241.

That is, the third page allocator 240 which has received
the request for deallocating the page for the page range of 1
GB to 2 GB may transfer the request for deallocating the
page for the page range of 1 GB to 2 GB to the root page
allocator Allocator #0 which is stored in the third page pool
management data 241 as the owner corresponding to the
page range of 0 GB to 2 GB.

The root page allocator 210 which has received the
request for deallocating the page for the page range of 1 GB
to 2 GB from the third page allocator 240 identifies that the
owner of the corresponding page range of 1 GB to 2 GB
which is stored at its own root page pool management data
211 is the second page allocator Allocator #2, and transfers
the request for deallocating the pages for the corresponding
page range to the second page allocator 230.

Receiving the request for deallocating the pages for the
page range of 1 GB to 2 GB from the root page allocator 210,
the second page allocator 230 may identify that the owner of
the page range of 1 GB to 2 GB which is stored at its own
second page pool management data 231 is itself, and may
deallocate a status of the page range of 1 GB to 2 GB to store
a deallocated state as the status of the page range of 1 GB
to 2 GB. That is, the second page allocator 230 changes the
status of the page range of 1 GB to 2 GB to “Free”.

In this way, in the system of dynamically allocating a page
according to an exemplary embodiment, when a page allo-
cator receives a request for deallocating specific pages of
which the ownership does not belong thereto, the page
allocator may transfer the request for deallocating the spe-
cific pages to a corresponding page allocator which is the
owner of the specific pages stored at its own page pool
management data table. Here, when the corresponding page
allocator forks the ownership of the specific page range to
another page allocator, the owner may be tracked by repeat-
edly transferring the request for deallocating the specific
pages to the forked page allocator.

FIG. 18 is a flowchart illustrating a method of dynami-
cally changing a page allocator according to an exemplary
embodiment.

Referring to FIG. 18, at least one dynamic page allocator
may be executed (operation 700). For example, a root page
allocator corresponding to initialization of the dynamic page
allocator system may be executed.

Next, the coordinator 100 may determine the system’s
state is in an oversubscribed state (operation 710). In detail,
the coordinator 100 may determine the system’s state as at
least one state of a state where communication between the
plurality of page allocators is in an overhead state, a state
where the number of requests for allocating and/or deallo-
cating a page by the page allocators becomes lower than a
reference value or higher than a reference value, a state
where a workload of the page allocators is smaller than a
reference value or larger than a reference value, and a state
where a size of the whole free page corresponding to the
page allocators is smaller than a reference value or larger
than a reference value.

When the coordinator 100 determines the system’s state
as in an oversubscribed state, i.e., at least one of a state
where the number of requests for allocating and/or deallo-
cating a page by the page allocator becomes more than a
reference value, a state where a workload of the page
allocator is larger than a reference value, and a state where

US 9,460,000 B2

9

a size of the whole free memory corresponding to the page
allocator is larger than a reference value, the process may
proceed to path A.

When the process proceeds to path A, the coordinator 100
may determine an operation of forking a child page allocator
from a parent page allocator (operation 720).

Next, the coordinator 100 may instruct the forking opera-
tion to the parent page allocator (operation 722).

Next, the parent page allocator which has received the
forking operation instruction by the coordinator 100 may
generate a child page allocator to fork the child page
allocator (operation 724).

Next, the parent page allocator may pass the ownership of
some page addresses thereof to the forked child page allo-
cator (operation 730).

Next, the parent page allocator and the child page allo-
cator may update information on the changed ownership and
store the updated information at its own page pool manage-
ment data table, respectively.

That is, the ownership information of some page
addresses changed by the child page forking operation may
be updated and stored at the page pool management data
table of the parent page allocator and the page pool man-
agement data table of the child page allocator.

Meanwhile, when the coordinator 100 determines the
system’s state as a non-oversubscribed state, i.e. at least one
of a state where the number of requests for allocating and/or
deallocating a page by the page allocators becomes lower
than a reference value, a state where a workload of the page
allocator is smaller than a reference value, and a state where
a size of the whole free page corresponding to the page
allocators is smaller than a reference value, the process may
proceed to path B.

When the process proceeds to path B, the coordinator 100
may instruct a merging operation to the forked child page
allocator (operation 752).

Next, the child page allocator which has received the
merging operation instruction by the coordinator 100 may be
merged to the parent page allocator (operation 754).

Next, the child page allocator may pass the ownership of
a specific page address which the child page allocator owns
to the parent page allocator to be merged (operation 760).

Next, the parent page allocator which has received the
ownership of the specific page address from the child page
allocator may update its own page pool management data
table and store the updated information (operation 770).

That is, the parent page allocator may update information
on the ownership of the specific page address which the
child page allocator has owned, at the data page for man-
aging a page pool of the parent page allocator, and store the
updated information.

In accordance with a method and a system for dynami-
cally changing a page allocator, a global page allocation
scheme and a local page allocation scheme may be selec-
tively used according to a system’s state.

That is, in a state in which a workload of a page allocator
is large, scalability may increase by partially applying a
local page allocation scheme through a page allocator fork-
ing operation. In contrast, in a state in which the workload
of the page allocator is small or a size of the whole free
memory is small, memory fragmentation may be minimized
by partially applying a global page allocation scheme
through a merging operation.

FIG. 19 is a flowchart illustrating a method of dynami-
cally allocating or deallocating a page according to an
exemplary embodiment. In detail, a case of receiving a

10

15

20

25

30

35

40

45

50

55

60

65

10

request for allocating or deallocating a page of a specific
page address will be described with reference to FIG. 19.

Referring to FIG. 19, a page allocator may receive a
request for allocating or deallocating a page of a specific
page address (operation 800).

Next, the page allocator determines whether the owner of
the specific page address is itself (operation 810). At this
time, the page allocator may determine owner information
of the specific page address through its own page pool
management data table.

Next, when it is determined by the determination in
operation 810 that the owner of the specific page address is
itself, the page allocator may allocate or deallocate the pages
corresponding to the specific page address (operation 820).

Next, the page allocator may update status information of
the specific page address allocated or deallocated according
to the request for allocating or deallocating the specific page
and store the updated information at its own page pool
management data table (operation 830).

Meanwhile, when it is determined by the determination in
operation 810 that the owner of the specific page address is
not itself, i.e. the owner is another page allocator, the page
allocator may track the owner of the specific page address
through its own page pool management data table (operation
840).

Next, the page allocator may transfer the request for
allocating or deallocating the pages to the corresponding
tracked owner (operation 850). The corresponding owner
which has received the transferred request for allocating or
deallocating the pages, that is, the corresponding page
allocator, may allocate or deallocate the corresponding
pages according to the transferred request for allocating or
deallocating the pages. Further, the corresponding page
allocator may update status information of the correspond-
ing page address which has been allocated or deallocated
and may store the updated status information at its own page
pool management data table.

FIG. 20 is a flowchart illustrating a method of dynami-
cally allocating a page according to an exemplary embodi-
ment. In detail, a case of receiving a request for allocating
a free page made without a limit for a specific page address
will be described with reference to FIG. 20.

Referring to FIG. 20, a page allocator may receive a
request for allocating a page made without a limit for a
specific page address (operation 900).

Next, the page allocator may determine whether there is
a free page which the page allocator owns, through its own
page pool management data table (operation 910).

Next, when it is determined in operation 910 that there is
a free page which the page allocator owns, the page allocator
may allocate a free page address which the page allocator
itself owns, in response to the request for allocating the
pages (operation 920).

Next, the page allocator may update status information of
the free page address to an allocated status “Alloc” and may
store the updated status information at its own page pool
management data table (operation 930).

Meanwhile, when it is determined in operation 910 that
there is no free page which the page allocator owns, the page
allocator may track a child page allocator owning a free page
through the page pool management data table (operation
940).

Next, the page allocator may transfer the request for
allocating the pages to the tracked child page allocator, that
is, the child page allocator owning a free page (operation
950).

US 9,460,000 B2

11

The corresponding child page allocator which received
the request for allocating the free pages may allocate a free
page address which the child page allocator owns, may
update status information of the allocated free page address
to an allocated status “Alloc”, and may store the updated
status information at its own page pool management data
table.
In accordance with a method and a system for dynami-
cally changing a page allocator of the exemplary embodi-
ments, a global page allocation scheme and a local page
allocation scheme may be selectively used according to a
system’s state.
That is, in a state in which a workload of a page allocator
is large, scalability may be increased by partially applying a
local page allocation scheme through a page allocator fork-
ing operation. In contrast, in a state in which the workload
of the page allocator is small or a size of the whole free
memory is small, memory fragmentation may be minimized
by partially applying a global page allocation scheme
through a merging operation.
Although the present inventive concept has been
described through several embodiments, these embodiments
are just exemplary and not limitative. In this way, it is
understood by those skilled in the art to which the present
inventive concept pertains that various variations and modi-
fications may be made according to doctrine of equivalents
without departing from the scope defined in appended
claims.
What is claimed is:
1. A system of dynamically changing a page allocator, the
system comprising:
a page allocator configured to allocate or deallocate a
page corresponding to a memory address according to
a request for allocating or deallocating the page; and

a coordinator configured to determine a state of the
system, and fork a child page allocator from the page
allocator, which serves as a parent page allocator, based
on the determination,

wherein the coordinator is configured to, in response to

determining that the state of the system is at least one
of a state where a number of requests for allocating or
deallocating a page of the page allocator becomes
higher than a reference value, a state where a workload
of the page allocator is larger than a reference value,
and a state where a size of a whole free memory
corresponding to the page allocator is larger than a
reference value, fork the child page allocator from the
parent page allocator.

2. The system of claim 1, wherein the coordinator is
configured to merge the forked child page allocator into the
parent allocator based on the determination.

3. The system of claim 2, wherein the coordinator is
configured to perform the forking operation and the merging
operation only between page allocators which are in a
relation of parent and child.

4. The system of claim 2, wherein the child page allocator
is configured to pass ownership of a memory address
corresponding to the child page allocator to the parent page
allocator in response to the child page allocator being
merged into the parent page allocator.

5. The system of claim 2, wherein, in response to deter-
mining that the state of the system is at least one of a state
where communication between the plurality of page alloca-
tors is in an overhead state, a state where a number of
requests for allocating or deallocating a page by the page
allocator becomes lower than a reference value, a state
where a workload of the page allocator is smaller than a

20

25

30

35

40

45

55

12

reference value, and a state where a size of a whole free
memory is smaller than a reference value, the coordinator is
configured to merge the child page allocator into the parent
page allocator.

6. The system of claim 1, wherein the page allocator
comprises a root page allocator corresponding to initializa-
tion of the system, by default.

7. The system of claim 6, wherein the page allocator
comprises at least one parent page allocator and at least one
child page allocator which are forked from the root page
allocator and are in a relation of parent and child.

8. The system of claim 1, wherein the parent page
allocator is configured to pass ownership of a part of a
memory address corresponding to the parent page allocator
to the child page allocator in response to the child page
allocator being forked from the parent page allocator.

9. The system of claim 1, wherein each of the page
allocators comprises a page pool management data table,
and the page pool management data table stores a page
address corresponding to a whole memory, an owner of the
page address, and status information on allocation or deal-
location of the page address.

10. The system of claim 9, wherein the page allocator is
configured to identify whether an owner of a specific page
address is the page allocator, through the page pool man-
agement data table of the page allocator, in response to
receiving a request for allocating or deallocating a page of
the specific page address, and to allocate or deallocate, when
the owner of the specific page address is identified as the
page allocator, the page corresponding to the specific page
address, and to track, when the owner of the specific page
address is identified as another page allocator, the owner of
the specific page address through the page pool management
data table and to transfer the request for allocating or
deallocating the page to the page allocator corresponding to
the tracked owner.

11. The system of claim 9, wherein, in response to
receiving a request for allocating a page made without a
limit for a specific page address, the page allocator is
configured to identify whether there is a free page which the
page allocator owns, through the page pool management
data table of the page allocator, and to allocate, when it is
identified there is the free page which the page allocator
owns, a page address which the page allocator owns in
response to the request for allocating the page, and to track,
when it is identified that there is no free page which the page
allocator owns, a child page allocator which owns a free
page, through the page pool management data table of the
page allocator, and to transfer the request for allocating the
page to the tracked child page allocator.

12. The system of claim 11, wherein the page allocator is
configured to sequentially transfer the request for allocating
the page from the page allocator to the child page allocator
along a family tree showing the relation of parent and child
until finding a child page allocator which owns the free page.

13. A method of dynamically changing a page in a page
allocation system, the method comprising:

determining a state of the page allocation system; and

forking a child page allocator from a parent page alloca-

tor, or merging a child page allocator into a parent page
allocator, based on a result of the determining,
wherein, in response to determining that the state of the
system is at least one of a state where a number of
requests for allocating or deallocating a page becomes
higher than a reference value, a state where an alloca-
tion workload is larger than a reference value, and a
state where a size of a whole free memory correspond-

US 9,460,000 B2

13

ing to the page allocation system is larger than a
reference value, the child page allocator is forked from
the parent page allocator.

14. The method of claim 13, wherein the forking opera-
tion for the page allocator is performed in response to
determining that the state of the system is at least one of a
state where a number of requests of allocating or deallocat-
ing a page by the page allocator becomes higher than a
reference value, a state where a workload of the page
allocator is larger than a reference value, and a state where
a size of a whole free memory corresponding to the page
allocator is larger than a reference value, or wherein the
merging operation between the parent page allocator and the
child page allocator is performed in response to determining
that the system’s state is at least one of a state where
communication between the parent page allocator and the
child page allocator is in an overhead state, a state where a
number of requests for allocating and/or deallocating a page
by the page allocator becomes lower than a reference value,
a state where a workload of the page allocator is smaller than
a reference value, and a state where a size of a whole free
memory is smaller than a reference value.

15. The method of claim 14, further comprising:

in response to the child page allocator being merged into

the parent page allocator, passing ownership of a
memory address corresponding to the child page allo-
cator to the parent page allocator; and

updating the changed owner information in a page pool

management data table of the parent page allocator, or
in response to the child page allocator being forked
from the parent page allocator, passing ownership for a
part of a memory address corresponding to the parent
page allocator to the child page allocator; and
updating information on a changed owner of the a part of
the memory address at the page pool management data
table of each of the parent and child page allocators.
16. The method of claim 14, further comprising:
receiving a request for allocating a page made without a
limit for a specific page address, by the page allocator;
identifying whether there is a free page which the page
allocator owns, through the page pool management
data table of the page allocator, by the page allocator,
and allocating, when it is identified that there is the free
page which the page allocator owns, a page address

25

35

40

14

which the page allocator itself owns, in response to the
request for allocating the page, or
tracking, when it is identified that there is no free page
which the page allocator itself owns a child page
allocator owning a free page, through the page pool
management data table of the page allocator and trans-
ferring the request for allocating the page to the tracked
child page allocator.
17. The method of claim 14, further comprising:
receiving a request for allocating or deallocating a page of
a specific page address, by the page allocator; and

identifying whether an owner of the specific page address
is the page allocator itself, through the page pool
management data table of the page allocator, by the
page allocator, and in response to identifying that the
owner of the specific page address is the page allocator
itself, allocating or deallocating the page corresponding
to the specific page address; and

storing status information on the allocated or deallocated

page of the specific page address at the page pool
management data table of the page allocator, or
in response to identifying that that the owner of the
specific page address is another page allocator, tracking
the owner of the specific page address through the page
pool management data table of the page allocator; and

transferring the request for allocating or deallocating the
page to the page allocator corresponding to the tracked
owner.
18. The method of claim 17, further comprising:
allocating or deallocating a page corresponding to the
specific page address according to the request for
allocating or deallocating the page, by the page allo-
cator corresponding to the tracked owner; and

updating status information of the allocated or deallocated
page, and storing the updated status information in the
page pool management data table of the page allocator
corresponding to the tracked owner, by the page allo-
cator corresponding to the tracked owner.

19. The method of claim 17, wherein the page allocator
sequentially transfers the request for allocating the page
from the page allocator to a child page allocator along a
family tree showing the relation of parent and child until
finding the child page allocator which owns the free page.

#* #* #* #* #*

